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Abstract

Application of the Galerkin finite element method to the electromag-
netic vector wave equation yields an implicit systemn of equations that must
be evolved in time The left hand matrix has units of capacitance and is
analogous to the mass matrix in continuum mechanics In this letter we
point out the interesting fact that for a Cartesian grid the Cholesky de-
composition of the capacitance matrix has the same sparsity as the original
matrix, i e there is no zero-fill during the course of the Cholesky decom-
position Therefore an iterative method using the incomplete Cholesky
decomposition as a preconditioner is quite efficient for nearly orthogonal
quadrilateral or hexahedral grids

1 Introduction

The classic nodal finite element method has been shown to be an accu-
rate and robust method for solving electrostatic problems However the
use of nodal finite elements for fully electromagnetic problems has been
problematic for several reasons First, the standard Lagrange nodal finite
element does not allow jump discoutinuities of fields across material in-
terfaces Second, the use of nodal finite elements can lead to spurious,
non-physical solutions For these reasons, vector finite element methods
which employ the recently developed class of elements known as edge,
Nedelec, or H(curl) elements [1, 2] have become quite popular This
paper is concerned with the solution of systems of equations that arise
when using the linear vector finite element method for the electromag-
netic vector wave equation The simple Incomplete Cholesky Fixed Point
(ICFP) iteration is mvestigated as an iterative method. It is shown that
this method is quite efficient for general grids, and in fact this method
converges to the exact solution in a single iteration for Cartesian grids if
the degrees-of-freedom are ordred properly



2 Galerkin Formulation

We are concerned with the computer simulation of time dependent elec-
tromagnetic fields in a generic volume Q. There is no free charge in the

valume An appronriate PDE is the vector wave equ ation for the electric
voiume appropr eeCing

field E
2
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For simplicity it is assumed that the dielectric permittivity ¢ and the
magnetic permeability ;¢ are constant scalars. The electric field on the
boundary I is specified by

fAix E=FEy on I, (2)

and the two initial conditions
E(t=0)=Ey in Q (3)
aE(f—-O) -QE( in Q, (4)

complete the des‘('riptlon of the PDE Typmdlly the initial conditions are
zero and the problem is driveu by either the time dependent current source
J or the time dependent boundary u)n(htlon E,,L

The variational form of (1) is: find E € H(curl) that satisfies
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for all E* € Ho(curl), where

(#,9) = /17 s, (6)
Q

Ho(curl) = {v: 5 € H(curl),n x v = 0} (7)
In the finite element solution of (5) the space H{(curl) is approximated by

a finite dimension subspace W" C H(curl) defined on a mesh, yielding a
system of ODE’s

(B,E') = (1'Vx E,Vx E") -+ (J,E") (5)

and

2

J
Aé;—l‘(‘ =Cé¢+ 5. (8)

The variable ¢ is the array of degrees-of-freedorn and the variable § is the
array of source terms, which includes contributions from both the inde-
pendent current source J and the boundary condition I:jbc The matrix A
is a symmetric positive definite matrix, with units of capacitance, which
resembles the mass matrix of continunm mechanics The matrices A and
C are given by

Ai]‘ = (CW,',‘X/J') N (9)
Cij = (17'V x W,V x W), (10)

where W, ls the basis function associated with edge ¢ The vector basis
functions W; are well known and will not be derived here The properties
of W; relevant to this letter are: 1) (VV,, W]) = 0 if edges 1 and 7 do not
share an element, and 2) (H’,—, "V]‘) « cosf, where § is the angle between
edges 1 and j



3 Incomplete Cholesky Fixed Point Iter-
ation

From now on we are concerned with the solution of the system Az = b
Let the capacitance matrix be decomposed as

A=M-N (11)
The matrix M is the preconditioner. The fixed point iteration is then
Ma** = Nz* 4+, (12)
This iteration is known to converge if and only if

Rl

p(MTIN) <1 (13)
LAY ] A /

where p (A) denotes the spectral radius of A Since A is symmetric positive
definite it has a Cholesky decomposition A = LLT where L is a lower
triangular matrix The Incomplete Cholesky Fixed Point (ICFP) iteration
is defined by using
M=LL", (14)
where LLT is the incomplete Cholesky decomposition of A The Cholesky
decomposition defined in 3] is shown in Fig 1 for convienence The in-
complete Cholesky decomposition is a modification of the above algorithm
such that line 8 is executed only if A (4, 7) = 0. Therefore the incomplete
Cholesky decomposition has the same sparsity pattern as the original
matrix. If the matrix A has at most m non-zero entries per row, then
the ICFP iteration requires approximatly m N, floating point operations,
where NV is the number of internal edges in the grid  The number of ICFP
iterations required depends upon how effective the incomplete Cholesky
decomposition is as a preconditioner
For a 2D or 3D Cartesian grid there is no zero-fill during the course of
the Cholesky decomposition, hence the ICFP gives the exact solution in a
single iteration. Consider line 8 of Fig 1 Assume that A (i, j) = 0, which
means that there is no interaction hetween edges ¢ and j. There will be

1 for k = 1:n

2 A(k,k) = sqrt(A(k,k))

3 for i = k+1:n

4 AL, k) = A(i,k)/A(k,k)
5 end
6

7

8

9

for j k+1l:n

for i = j:n

A(i,§) = A(1,7) - AGL,K)*A(5,K)
end

10 end

11 end

Figure 1: Cholesky decomposition algorithm for n by n matiix A
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Figure 2. Numbering schieme used to eliminate zeio-fill

zero fill only if there is another edge k, with & < j < 1, that interacts with
both edge i and edge j Numberiug the edges sequentially precludes this
possibility This numbering scheme is illustrated in Fig 2

For a distorted quadrilateral or hexahedral grid, there is zero-fill during
the course of the Cholesky decomposition, hence the ICFP is not exact.
Again consider line 8 of Fig. 1, and assume that A(4,5) = 0. For a
distorted grid there will be some edge k, with k < j < 4, that interacts
with both edge 1 and edge j This is illustrated in Fig 3 However, since
A (5, k) * A (5, k) o (cosa)?, the terms that are ignored are quite small for
grids that are not too distorted In [4] it was shown that for the case of a
triangular grid, a grid compaosed of equalateral triangles was ideal in the
sense that A had minimum condition number The result here is similar,
except that the condition number of M ™! A4 is actually unity for the ideal
grid

As an example, cousider the grid shown in Fig. 4. This grid has 1000
nodes and 729 distorted hexahedral cells The capacitance matrix has
dimension 1728, the number of internal edges Using an initial iterate
of zg = 0, the ICFP method required only 5 iteratious to achieve a Lo
residual of 10™% As another example, consider the spherical grid shown
in Fig 5 This grid has 2273 nodes and 2048 hexahedral cells The
capacitance matrix has dimension 5792 For this grid the ICFP method
required 7 iterations to achieve a L, residual of 107 This grid required
more iterations not because it was larger, but because the minimum angle
between adjacent edges was smaller This same number of iterations was
required for grids with over 180,000 edges
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Figure 3 Zero-fill occurs for distorted grids

4 Summary

The Incomplete Cholesky Fixed Point iteration is suggested as a method
for solving capacitance systems that arise in the vector finite element solu-
tion of electromaguetic vector wave equation This method has the prop-
erly that it converges to the exact solution in a single iteration for Carte-
sian grids. For hexahedral grids that are not too distorted the method
requires between 5 and 10 iteratious to achieve an Ly residual if 1079,
regardless of problem size
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Figure 5: Hexahedral grid of spher



